- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Prasad, Madhushini Narayana (2)
-
Hanasusanto, Grani A (1)
-
Hanasusanto, Grani A. (1)
-
Hasenbein, John J (1)
-
Wang, Yijie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents an extension of Naor’s analysis on the join-or-balk problem in observable M/M/1 queues. Although all other Markovian assumptions still hold, we explore this problem assuming uncertain arrival rates under the distributionally robust settings. We first study the problem with the classical moment ambiguity set, where the support, mean, and mean-absolute deviation of the underlying distribution are known. Next, we extend the model to the data-driven setting, where decision makers only have access to a finite set of samples. We develop three optimal joining threshold strategies from the perspectives of an individual customer, a social optimizer, and a revenue maximizer such that their respective worst-case expected benefit rates are maximized. Finally, we compare our findings with Naor’s original results and the traditional sample average approximation scheme. Funding: This research was supported by the National Science Foundation [Grants 2342505 and 2343869].more » « less
-
Prasad, Madhushini Narayana; Hanasusanto, Grani A. (, SIAM Journal on Optimization)
An official website of the United States government
